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ABSTRACT 
 
 
 
This thesis analyzes the ITU-T G.7712 standard to evaluate the main 

features and specifications that are defined in the 11/2001 edition.  The latest 

03/2003 revision was also reviewed to determine what are the changes and 

latest update presented in that paper.  In order to find out the compliance among 

telecommunication industry vendors, surveys were also conducted to determine 

which is the most widely supported standard.  Finally, simulations were run using 

Opnet IT Guru software for the two routing protocols defined in the standard, IS-

IS and OSPF to examine of their characteristics and determine their usefulness. 

It was observed that OSPF achieves better performance and is the least 

obtrusive on network operations. 
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EXECUTIVE SUMMARY 
 
The Synchronous Optical Network/Synchronous Digital Hierarchy 

(SONET/SDH) standard has evolved from a relatively unknown technology in the 

1980s to become widely deployed throughout the telecommunications industry. 

Several ITU-T standards have been published to ensure standard protocols and 

recommendations are followed by all equipment vendors on how the network 

should perform. 

ITU-T G.7712 is the standard for Architecture and Specification of the 

Data Communications Network (DCN).  It is used for network management, 

signaling and routing traffic in SONET/SDH, Optical Transport Network (OTN) 

and Dense Wavelength Division Multiplexing (DWDM) networks. 

G.7712 is important for the telecommunication industry since it enables 

intelligent optical networks with combined IP-managed and OSI-managed 

equipment. It is also crucial for vendors of network edge devices as it allows for 

easy transport of network management traffic to these devices via the core 

optical switches without the need to create expensive and complicated overlay 

networks. 

The first part of this thesis research is to look into the ITU-T G.7712 

standard to find out what are the main features and specifications that were 

defined in the 11/2001 edition.  The latest 03/2003 revision was also reviewed to 

determine what changes and updates were presented in that paper. 

A survey was done to determine the support of the ITU-T G.7712 standard 

by some of the major SONET/SDH vendors in the telecommunications industry.  

Five vendors were selected and the results will show the support level of these 

vendors. 

The second part of this thesis research is to model and simulate the DCN 

using OPNET IT Guru software for the two routing protocols defined in the 

standard, IS-IS and OSPF. 



 xviii

OPNET IT Guru is a modeling and simulation tool that provides an 

environment for analysis of communication networks. However, it does not have 

a SONET Data Communications Channel (DCC) model in its standard model 

library. Thus a SONET DCC network model was created to facilitate our 

simulation of IS-IS and OSPF routing protocols as defined in the G.7712 

standard. 

Three different scenarios were created using this OPNET model to 

simulate the packet flow within the SONET DCC network and to understand the 

differences and characteristics of the two routing protocols. The objective of each 

experiment scenario was to evaluate the performance using parameters like 

Ethernet delay, server performance, link throughput and link utilization. 

The overall results demonstrated that OSPF is the protocol most suited for 

the DCC network based on its performance. It also supports the decision of 

G.7712 in specifying the use of an IP protocol architecture for the DCC network. 
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I. INTRODUCTION  

A. BACKGROUND 
Before the birth of Synchronous Optical Network (SONET) / Synchronous 

Digital Hierarchy (SDH), the transmission system widely deployed in the 

telecommunications industry was known as the Plesiochronous Digital Hierarchy 

(PDH) [1].  Plesiochronous means the timing of signals across the network is 

almost but not precise, and there is not a centralized timing source since each 

node has its own clock.  

As more and more channels were multiplexed together into higher layers 

of the PDH hierarchy, each frame need to be completely demultiplexed in order 

to select an individual channel as the timing across all the nodes was not totally 

the same. Another problem occurred where different networks with relatively 

wide differences in timing met, such as between Europe and the U.S. 

The SONET standard was designed in the mid 1980’s to alleviate these 

problems [1].  It is more widely used in North America. The International 

Telecommunications Union later generalized SONET into the SDH in order to 

accommodate the PDH rates in use outside North America, mainly deployed in 

Europe and Asia-Pacific Countries.  

SONET/SDH standardized the line rates, coding schemes, bit-rate 

hierarchies, and operations and maintenance functionality. SONET/SDH also 

defined the types of Network Elements (NEs) required, network architectures that 

vendors could implement, and the functionality that each node must perform. 

A typical SONET/SDH network utilizes the Section Data Communications 

Channels (DCC).  Briefly, one or more Operations Systems (OSs) manages the 

SONET/SDH NEs and the connectivity between them is achieved through a Data 

Communications Network (DCN). 

Open System Interface (OSI) was selected as the standard for SONET 

Section DCC because OSI protocols were accepted as the basis for the larger 

set of Telecommunications Management Network (TMN) standards. 
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Compared to OSI, the Simple Network Management Protocol (SNMP) 

layers are much simpler.  In SNMP, the network management applications 

consist of vendor-specific modules such as fault management, log control, 

security and audit trails and they map the SNMP management traffic instead of 

OSI headers into the DCC fields or the payload areas for onward transmission to 

the management process. 

Because of the simplicity and similarity of the SNMP network management 

process, service providers have begun to request that SONET/SDH products 

support an IP protocol stack on their OS/NE interface (Ethernet), since many 

service providers did not want to implement an OSI-based DCN or deploy 

mediation devices. 

G.7712 is the standard for Architecture and Specification of the Data 

Communications network (DCN) [2]. G.7712 is important for the 

telecommunication industry since it enables intelligent optical networks with 

combined IP-managed and OSI-managed equipment. It is also crucial for 

vendors of network edge devices as it allows for easy transport of network 

management traffic to these devices via the core optical switches without the 

need to create expensive and complicated overlay networks. 

 

B. OBJECTIVES 
There are 2 main objectives of this thesis. The first one involved study into 

the main features and new updates available in the ITU-T G.7712 standard and a 

survey was done to determine the support level by some of the major 

SONET/SDH vendors in the telecommunications industry.  The push for an 

eventual IP DCN for managing the SONET network is obvious as shown by the 

positive support from the telecommunications industry.  

As such, it is necessary to evaluate the routing protocols in the DCN to 

facilitate moving towards an IP DCN and this formed the second objective of this 

thesis. By modeling and simulating the two routing protocols in the DCN using 

OPNET IT Guru, the overall results demonstrated that OSPF is the protocol most 



3 

suited for the DCC network based on its performance. It also supports the 

decision of G.7712 in specifying the use of an IP protocol architecture for the 

DCC network. 

 

C. RELATED WORK 
So far, no one has done any related research of this nature based on an 

in-depth literature survey. Further, a search via the internet cannot find any 

similar studies.  By doing this study, we can determine whether this standard is 

widely adopted by the telecommunications industry and, if so, it will help in 

defining the protocols when designing a DCN to manage the SONET/SDH 

network. 

  

D. THESIS ORGANISATION 
This chapter provides a brief background of SONET/SDH and the 

objective of this thesis.  The following paragraphs explained how the various 

chapters of this thesis report are being organised.  

Chapters II and III provide some background knowledge for understanding 

the Synchronous Optical Network (SONET) / Synchronous Digital Hierarchy 

(SDH) technologies.  Chapters IV and V examine the protocols used by the 

SONET/SDH network management and analyze the ITU-T G.7712 standard to 

find out its main tenets, which is the main objective of this thesis research.  

Chapter VI concludes the thesis. 

In Chapter II, a brief history on how SONET/SDH has evolved from a 

relatively unknown technology to become widely deployed in the 

telecommunications industry is presented.  This is followed by some of the 

advantages and usefulness of SONET/SDH.  The chapter ends with the main 

differences between SONET and SDH. 

The basic configuration and terminology associated with the equipment of 

a simple SONET network are explained in Chapter III.  The SONET architecture, 

multiplexing hierarchy, its frame structure, functions of the overhead bytes, and 
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how are they are being used in the SONET built-in standards for Operations, 

Administration, Maintenance and Provisioning (OAM&P) are also presented in 

this chapter. 

Chapter IV focused on the main objective of this thesis research.  

Definitions and usage of Data Communications Channel (DCC) and Data 

Communications Network (DCN) are explained.  The two main protocols used by 

the network management of SONET/SDH, Open System Interface (OSI) and 

Simple Network Management Protocol (SNMP) using Internet Protocol (IP) are 

also explored, followed by a comparison between the two of them and why there 

is a push for IP over the DCC.  The chapter concludes with the study into the 

main features and new updates available in both the 11/2001 and 03/2003 

edition of the ITU-T G.7712 standard. 

  The outcome of the surveys to determine the compliance among 

telecommunication industry vendors are presented in Chapter V.  Finally, an 

Opnet model was created to study the two different routing protocols, IS-IS and 

OSPF defined in the G.7712 standard. 

Chapter VI concludes the thesis report with outcome of the research and 

what future research areas can be further explored. 
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II. BACKGROUND 

A. CHAPTER OVERVIEW 
In this chapter, we will look at the evolution of Synchronous Optical 

Network (SONET) / Synchronous Digital Hierarchy (SDH) from a relatively 

unknown technology to become widely deployed in the telecommunications 

industries.  We will then list out some of the advantages and usefulness of 

SONET/SDH.  The main differences between SONET and SDH will also be 

presented. 

 

B. SONET/SDH EVOLUTION 
In the early 1980s, a revolution in telecommunications networks was 

ignited by the use of a relatively unassuming technology, fiber-optic cable. Since 

then, the consequential increase in network quality and tremendous cost savings 

have led to many advances in technologies required for optical networks. Many 

of these benefits have yet to be realized.  The digital communications network 

has evolved through three fundamental stages: asynchronous, synchronous, and 

optical.  

1. Asynchronous 
Traditional digital telecommunications services such as T1/DS1s were 

designed to aggregate analog telephone lines for more efficient transport 

between central offices. Twenty four digitized voice lines (DS0s) were carried 

over a DS1 using time-division multiplexing (TDM).  

To review, in a TDM architecture, multiple channels (24 for DS0) share the 

circuit basically in rotation, with each DS0 having its own assigned time slot to 

use or not as the case may be [1]. As each channel is always found in the same 

place no address is needed to demultiplex that channel at the destination. 

Twenty-eight (28) DS1s are TDM aggregated into a DS3 in the same manner. 

The older DS1/DS3 system is known as the Plesiochronous Digital 

Hierarchy (PDH), as the timing of signals across the network is plesiochronous, 
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which means almost but not precisely. Data communications networks such as 

Ethernet are asynchronous, as there is not a centralized timing source and each 

node has its own clock.  

As more and more channels are multiplexed together into higher layers of 

the PDH hierarchy, a number of problems arise. Since the timing on various 

DS1s going into a DS3 may differ slightly, bit-stuffing is required to align all within 

the DS3 frame. Once this is done, the individual DS1s are no longer visible 

unless the DS3 is completely demultiplexed. In order to select an individual 

channel, the whole DS3 frame must be torn down to extract out the DS1 and 

then subsequently rebuilt back into the DS3. The equipment required to do this is 

expensive. Another problem arises with interoperability of different networks with 

relatively wide differences in timing, such as those in Europe and the U.S.. 

Expensive equipment that also adds latency is required for the interface.  

2. Synchronous 
To alleviate these problems, the Synchronous Optical Network (SONET) 

standard was designed in the mid 1980’s [1].  It is more widely used in North 

America. The International Telecommunications Union later generalized SONET 

into the Synchronous Digital Hierarchy (SDH) in order to accommodate the PDH 

rates in use outside North America, mainly deployed in Europe and Asia-Pacific 

Countries.  

SONET/SDH standardized line rates, coding schemes, bit-rate 

hierarchies, and operations and maintenance functionality. SONET/SDH also 

defined the types of network elements required, network architectures that 

vendors could implement, and the functionality that each node must perform. 

Network providers could now use different vendor's optical equipment with the 

confidence of at least basic interoperability. 

3. Optical 
The one aspect of SONET/SDH that has allowed it to survive during a 

time of tremendous changes in network capacity needs is its scalability. Based 

on its open-ended growth plan for higher bit rates, theoretically no upper limit 

exists for SONET/SDH bit rates (The current maximum bit rate deployed is 
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40 Gbps). However, as higher bit rates are used, physical limitations in the laser 

sources and optical fiber begin to make the practice of endlessly increasing the 

bit rate on each signal an impractical solution. Additionally, connection to the 

networks through access rings has also had increased requirements. Customers 

are demanding more services and options and are carrying more and different 

types of data traffic. To provide full end-to-end connectivity, a new paradigm was 

needed to meet all the high-capacity and varied needs. Optical networks provide 

such bandwidth and flexibility to enable end-to-end wavelength services. 

Optical networks began with wavelength division multiplexing (WDM) [1], 

which arose to provide additional capacity on existing fibers. Like SONET/SDH, 

defined network elements and architectures provide the basis of the optical 

network. However, unlike SONET/SDH, rather than using a defined bit-rate and 

frame structure as its basic building block, the optical network will be based on 

wavelengths. The components of the optical network will be defined according to 

how the wavelengths are transmitted, groomed, or implemented in the network. 

Viewing the network from a layered approach, the optical network requires the 

addition of an optical layer. To help define network functionality, networks are 

divided into several different physical or virtual layers. The first layer, the services 

layer, is where the services such as data traffic enter the telecommunications 

network. The next layer, SONET/SDH, provides restoration, performance 

monitoring, and provisioning that is transparent to the first layer.  

Emerging with the optical network is a third layer, the optical layer. 

Standards are being developed and essentially can provide the same 

functionality as the SONET/SDH layer, while operating entirely in the optical 

domain. The optical network also has the additional requirement of carrying 

varied types of high bit-rate non-SONET/SDH optical signals that bypass the 

SONET/SDH layer altogether. Just as the SONET/SDH layer is transparent to 

the services layer, the optical layer will ideally be transparent to the SONET/SDH 

layer, providing restoration, performance monitoring, and provisioning of 

individual wavelengths instead of electrical SONET/SDH signals. 
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C. ADVANTAGES OF SONET/SDH  
There are a number of advantages of deploying a SONET/SDH network, 

for both the customers and service providers.  Each of the key benefits is briefly 

explain below: 

1. Multipoint Configuration 
SONET/SDH is frequently deployed in multipoint configurations.  This 

means several sources of SONET/SDH traffic can be combined and distributed 

without terminating the digital stream to recover and process the constituent 

signals.  This process is also known as “grooming”.  Grooming can concentrate 

traffic and service more customers with fewer links than without grooming.  

SONET/SDH grooming requires less equipment, thus reducing the need for 

linking multiplexers, digital cross-connect and the need for cabling between 

equipment terminations and patch panels.  In simple terms, it also means saving 

space and money. 

2. Enhanced Operations, Administration, Maintenance and 
Provisioning (OAM&P) 

SONET/SDH enhances the OAM&P capabilities and integrates them into 

all SONET/SDH network elements, mostly through the inclusion of dedicated 

overhead bytes reserved for the purpose.  The OAM&P procedures are an 

integral part of the SONET/SDH standard with more bandwidth allocated for 

them and thus the information available is more sophisticated.  This substantial 

amount of information available allows for quicker troubleshooting and detection 

of failures before the network degrades to unacceptable levels. It also allows for 

remote provisioning and configuring of SONET/SDH network elements, and thus 

can be centrally maintained without disturbing the link and services to the users 

and indeed reduces the travel expenses for maintenance personnel.  

3. New Service Offerings 
The huge amount of bandwidth available in SONET/SDH can support new 

services that were not possible previously.  Video applications, 100 Mbps LAN 

interconnections, color faxing, and other bandwidth-hungry applications are now 

easily supported in an affordable and reliable mean.  
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4. Optical Interface 
Optical interconnect, also known as “mid-span meet” is made possible 

with multi-vendor compatibility since the SONET/SDH standards are well defined 

for fiber-to-fiber interfaces at the physical (photonic) layer.  These low level 

aspects define the optical line rate, wavelength, power levels, pulse shapes, and 

coding for bits on the fiber links.  They allow the customer to use a direct 

SONET/SDH interface, possibly a different vendor equipment to connect to its 

service provider. 

5. Protection Rings 
The ability of SONET/SDH to be deployed in a ring architecture is perhaps 

the most distinctive feature of SONET/SDH network.  It enables the SONET/SDH 

network to configure various types of protection mechanisms: Unidirectional Line-

Switched Rings (ULSR), Unidirectional Line-Switched Rings (ULSR), Two-Fiber 

Bidirectional Line-Switched Rings (2F-BLSR) and Four-Fiber Bidirectional Line-

Switched Rings (4F-BLSR) based on a given requirement.  No matter which 

mechanism the SONET/SDH network employs, the main objective is to allow the 

automatic protection switching to kick in when a failure is detected and restore 

the services to the customers without any noticeable interruption to the traffic.  

 

D. DIFFERENCES BETWEEN SONET AND SDH 
There are basically only two major differences between SONET and SDH 

[3], the first one is the naming convention/hierarchical structure for the 

transmission rates and the second being the framing used for the overhead 

bytes. 

1. Naming Convention 
Table 1 shows the difference transmission rates between SONET and 

SDH. 

Common SONET/SDH Rates 

Speed SONET (US) SDH (Europe) OCx (ATM) 

51.84 Mbps STS-1 STM-0 OC-1 
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155.52 Mbps STS-3 STM-1 OC-3 

622.08 Mbps STS-12 STM-4 OC-12 

2488.32 Mbps STS-48 STM-16 OC-48 

9953.28 Mbps STS-192 STM-64 OC-192 

Table 1.   Common SONET/SDH Rates (After Ref. [3].) 
 

2. Overhead Bytes 
The SONET definitions of some overhead messages are more tuned to 

the operating conditions within North America, while the SDH equivalents are 

more general in nature. 

This tuning of overhead messages are needed as both the SONET and 

SDH use different terms to describe the three layers of network topology. SONET 

uses the terms path, line and section while SDH uses the terms path, multiplex 

section and regenerator section, as shown in Figures 1 and 2 below. 

 
Figure 1.   SONET Link (From Ref. [4].) 
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Figure 2.   SDH Link (From Ref. [4].) 

 

As for specific overhead bytes, the content of Automatic Protection 

Systems (APS) messages transmitted in the K1/K2 bytes and the values of the 

C2 Path Overhead (POH) byte are slightly different for SDH as compared to 

SONET as the frame structures between the two are different as shown in 

Figures 3 and 4 below. 

 
Figure 3.   SONET Frame Structure (From Ref. [3].) 
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Figure 4.   STM-N Frame Structure (From Ref. [3].) 

 

E. SUMMARY 
This chapter reviewed the evolution of Synchronous Optical Network 

(SONET) / Synchronous Digital Hierarchy (SDH) from a relatively unknown 

technology to become widely deployed in the Telecommunications Industries.  

Some of the advantages and usefulness of SONET/SDH are discussed.  The 

main differences between SONET and SDH are also presented. 

In the next chapter, we will look at the basic configuration of a simple 

SONET network and the SONET architecture. 
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III. ARCHITECTURE 

A. CHAPTER OVERVIEW 
In this chapter, we will look at the basic configuration of a simple SONET 

network and the terminologies that defines the equipment.  After which, we will 

drill into the SONET architecture, explain a bit on the multiplexing hierarchy, its 

frame structure, functions of the overhead bytes, and how are they are being 

used in the SONET built-in standards for Operations, Administration, 

Maintenance and Provisioning (OAM&P). 

 

B. BASIC CONFIGURATION 
A very simple SONET network could consist of two terminals with a length 

of fiber between them. If the distance is too long for one fiber link, regenerators 

are used to amplify and reconstruct the physical signal. An add/drop multiplexer 

provides two fiber connections with the ability to access the internal structure of 

the SONET frame to remove or insert individual channels as required for that 

node while passing the rest of the traffic on through. Digital Cross-connects 

(DXC) are used to switch, combine, redirect, and otherwise groom traffic, with 

varying degrees of granularity. All of these elements are section terminating 

equipment; all except regenerators are also line terminating equipment. Network 

elements where non-SONET signals are attached to the SONET network are 

path terminating equipment. All elements are intelligent, accessing in-band 

management information dedicated to each layer within the SONET frame [1]. 
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Figure 5 shows a typical SONET connection. 

 
Figure 5.   Typical SONET Connection (From Ref. [5].) 

 
Within metropolitan areas, SONET networks are typically configured 

physically as rings, as shown in Figure 6 below. A ring topology provides a single 

level of redundancy, allowing restoration of service if one fiber link is broken. The 

SONET mechanism for restoration takes less than 50 milliseconds to recover 

from a break, but is considered somewhat inefficient as half the total ring 

bandwidth is reserved [1]. Note that even though the physical topology may be a 

ring, the individual channels (which are manually provisioned) are point-to-point 

— SONET has no equivalent of Ethernet/IP broadcast or multicast service [1]. 
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Figure 6.   An example of a SONET Ring configuration (After Ref. [1].) 
 

C. MULTIPLEXING HIERARCHY 
The STS-1 frame is described as an array of bytes 90 columns wide by 

nine rows high. This works out to be 810 bytes or 6480 bits per frame transmitted 

every 125us, or at a rate of 8,000 frames per second. This results in a basic 

SONET signal rate of 51.840 Mbit/sec (8000 fps * 810 b/frame), of which the 

payload is roughly 49.5 Mbps, enough to encapsulate 28 DS-1s, a full DS-3 or 21 

CEPT-1s. All higher level signals are multiples of this rate. 

An STS-3 is very similar to STS-3c. The frame is 9 rows by 270 bytes. The 

first 9 columns contain the transport overhead section and the rest is for the 

Synchronous Payload Envelope (SPE). The transport overhead (Line and 

Section) is the same for both STS-3 and STS-3c. 

For an STS-3 frame, the SPE contains 3 separate payloads and 3 

separate path overhead fields. In essence, it is the SPE of three separate STS-

1's packed together one after the other. 



16 

In STS-3c, there is only one path overhead field for the entire SPE. The 

SPE for an STS-3c is a much larger version of a single STS-1 SPE. 

Figure 7 shows the SONET Multiplexing Hierarchy. 

 
Figure 7.   SONET Multiplexing Hierarchy (From Ref. [4].) 

 

D. FRAME STRUCTURE 
The most basic element of the Synchronous Optical Network (SONET) 

standards is the synchronous transport signal level 1 (STS-1), which provides the 

framing for transmission of control information along with the customer traffic [5]. 

This frame format is used for all SONET transmissions. As the data rates 

increase, more copies of the STS-1 frame are transmitted for each transmission 

period. Unlike Ethernet or IP where the frame structure is usually illustrated 

linearly, the large frame sizes involved in SONET are depicted as two 

dimensional matrices.  

As stated above, a standard STS-1 frame is 9 rows by 90 bytes as shown 

in Figure 8. The figure is read left to right, then top to bottom.  The first 3 bytes of 

each row comprise the Section and Line overhead. These overhead bits are 

comprised of framing bits, and pointers to different parts of the SONET frame. 
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The combination of the Section and Line overhead comprises the 

"Transport Overhead".  The transport overhead carries the section and line 

overhead control information, including parity, trace, alarm signals, orderwire, 

and data communication channels (DCC). 

There is one column of bytes in the payload that comprises the STS path 

overhead. This column frequently "floats" throughout the frame. Its location in the 

frame is determined by a pointer in the Section and Line overhead. 

The remainder is the Synchronous Payload Envelope (SPE). The SPE 

carries the information that must traverse the entry and exit points through the 

SONET network. This information includes both the payload traffic and the path 

overhead. The path overhead coordinates the activities between the SONET 

terminals (or add/drop multiplexers) that are responsible for the entry and exit 

points through the network. 

Figure 8 shows the Synchronous Transport Signal level 1 (STS-1) frame 

structure. 

 
Figure 8.   STS-1 Frame Structure (From Ref. [4].) 
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E. OVERHEAD TYPES 
Figure 9 shows the STS-1 Transport and Path Overhead (SONET 

Overhead). 

 
Figure 9.   STS-1 TOH & POH (From Ref. [4].) 

 

1. Transport Overhead 

The transport overhead, which is shown in Table 2, provides mechanisms 

to control the section and line interactions over the SONET network. At the 

lowest logical level, the section interactions provide for the physical link between 

adjacent peer equipment, such as the transfer of information between a SONET 

terminal and a regenerator.  
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Transport Overhead 

Framing  

A1 

Framing  

A2 

Trace/growth (STS-ID) 

J0/Z0 

BIP-8  

B1/undefined 

Orderwire  

E1/undefined 

User  

F1/undefined 

Section  
overhead 

Data comm  

D1/undefined 

Data comm  

D2/undefined 

Data comm  

D3/undefined 

Pointer  

H1 

Pointer  

H2 

Pointer action  

H3 

BIP-8  

B2 

APS  

K1/undefined 

APS  

K2/undefined 

Data comm  

D4/undefined 

Data comm  

D5/undefined 

Data comm  

D6/undefined 

Data comm  

D7/undefined 

Data comm  

D8/undefined 

Data comm  

D9/undefined 

Data comm  

D10/undefined 

Data comm 

D11/undefined 

Data comm  

D12/undefined 

Line  
overhead 

Sync 

status/growth  

S1/Z1 

REI-L/growth  

M0 or M1/Z2 

Orderwire  

E2/undefined 

Table 2.   Transport Overhead (After Ref. [6].) 
 

2. Section Overhead (SOH) 
The section overhead information manages the transport of the optical 

channel information between adjacent SONET equipment (at each end of a 

fiber), roughly corresponding to the OSI link layer. Services mapped to the 
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section overhead include framing, channel trace, performance monitoring, voice 

orderwire, and an overlay data communications channel (DCC). 

Figure 10 provides a description of all the bytes from STS-1 Section 

Overhead (SOH). 

 
Figure 10.   Descriptions of STS-1 SOH (From Ref. [4].) 

 

3. Line Overhead (LOH) 
Where the section overhead provides a set of mechanisms to coordinate 

the point-to-point transmission of information, the line overhead services 

concentrate on the alignment and delivery of information between terminals and 

add/drop multiplexing equipment.  The line overhead also defines data channels 

carrying Operations, Administration, Maintenance and Provisioning (OAM&P) 

information, which would be application layer information (like SNMP) in an OSI 

modeled network. 

Figures 11 and 12 provide a description of all the bytes from STS-1 Line 

Overhead (LOH). 
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Figure 11.   Descriptions of STS-1 LOH (from [4].) 
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Figure 12.   STS-1 LOH descriptions continued (From Ref. [4].) 
 

4. Path Overhead (POH) 
With the line and section services providing the mechanisms needed to 

frame and deliver the STS-1 frames, the SPE contains a combination of path 

overhead and payload traffic. The path overhead is the end-to-end transport of a 

circuit, which also has application information (performance monitoring, status, 

tracing) for management.  

Table 3 and Figures 13 and 14 provide a description of all the bytes from 

STS-1 Path Overhead (POH). 
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Path Overhead 

J1 - Trace 

B3 – Error Monitor  

C2 – Signal label 

G1 – Status 

F2 – Users Channel 

H4 – Multi Frame Indicator 

Z3 – Future use 

Z4 – Future Use 

N1 – Tandem Connection 

Table 3.   Path Overhead (After Ref. [6].) 
 



24 

 
Figure 13.   Description of STS-1 POH (From Ref. [4].) 

 



25 

 
Figure 14.   STS-1 POH description continued (From Ref. [4].) 
 

5. Virtual Tributary Line Overhead (VT POH) 
As its name implies, the VT-POH is the virtual end-to-end transport of a 

circuit, which also has application information (performance monitoring, status, 

tracing) for management.  

Figure 15 provides a description of all the bytes from STS-1 Virtual 

Tributary Path Overhead (VT POH). 
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Figure 15.   Description of STS-1 VT-POH (From Ref. [4].) 
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F. OAM&P 
One of the important features of SONET/SDH is its built-in standards for 

Operations, Administration, Maintenance and Provisioning (OAM&P).  It covers 

all the major day-to-day operations and fault detections in the SONET/SDH 

network.  

Listed below are the overhead bytes that are directly related to the 

SONET OAM&P.  Their detailed description and usage were provided in earlier 

this section. 

1. A1/A2 Framing bytes 
2. D1, D2 and D3 DCC bytes 
3. H1/H2 Pointer bytes 
4. K1/K2 Automatic Protection Switching (APS) bytes 
5. D4 – D12 DCC bytes 
6. S1 Synchronization byte 
7. M0/M1 byte 
8. C2 Signal Path byte 
9. G1 path Status Byte 
Figure 16 presents an overview of how the various OAM&P overhead 

bytes are used and interacted. 
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Figure 16.   SONET Maintenance Interactions (From Ref. [4].) 
 

SONET/SDH standards define various major failure conditions and their 

associated alarm indicators.  They are used to inform the SONET/SDH network 

where failure exists.  Figure 17 lists the major failures, what the alarms mean and 

their detection criteria. 
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Figure 17.   Major Alarm Indicators in OAM&P (From Ref. [4].) 
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G. SUMMARY 
This chapter gives us an understanding of the basic configuration of a 

simple SONET network and the terminologies used.  The SONET architecture on 

the multiplexing hierarchy, its frame structure, functions of the overhead bytes 

were also explained. 

In the next chapter, we will look at the Data Communications Channel 

(DCC), Data Communications Network (DCN) and the main features and new 

updates available in the ITU-T G.7712 standard. 
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IV. THE DCC, DCN & THEIR STANDARDS 

A. CHAPTER OVERVIEW 
In this chapter, we will look at the definitions and usage of Data 

Communications Channel (DCC) and Data Communications Network (DCN).  

Then we explore the two main protocols used by the network management of 

SONET/SDH, the OSI and SNMP (IP).  We then explain why there is a push for 

IP over the DCC before completing the chapter with a discussion of the main 

features and new updates available in the ITU-T G.7712 standard. 

 

B. DCC & DCN 
The DCC is 12-bytes long and can be found in the SOH and LOH.  In the 

section layer, three bytes (D1-D3) are allocated in STS-1, the lowest level of an 

STS-N signal for section data communications. These three bytes are treated as 

one 192 kbps data channel for the transmission of alarms, maintenance, control, 

monitor, administration as well as other network element communication needs. 

In the line layer, 9 bytes (D4-D12) are used as a 576 kbps data channel for 

similar purposes. Use of the LOH for DCC traffic provides a large pipe and allows 

for the delivery of more information using the overhead channel [7]. 

The DCN is a data network that supports layer 1 (physical), layer 2 (data-

link), and layer 3 (network) functionalities and consists of routing/switching 

functionality interconnected via links.  It is also designed to support the 

transportation of distributed Management Communications Network (MCN) and 

Signaling Communications Network (SCN) for Telecommunications Management 

Networks (TMN) and Automatic Switched Transport Networks (ASTN) 

respectively [8]. 

A typical SONET Network management communications architecture 

utilizing the Section DCC is shown in Figure 18.  Briefly, one or more Operations 

Systems (OSs) manages the Network Elements (NEs).  Connectivity between 

the OS and NEs is achieved through a Data Communications Network (DCN).  
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An NE which directly attaches to the DCN is referred to as a Gateway NE (GNE).  

Access to NEs subtending off the GNE is achieved through the Embedded 

Operations Channel (EOC) which in the case of SONET is the Section DCC.   

DCN

SONET GNE

LAN

LAN

Operations
System

SONET NE

SONET NE

SONET NE

DCC DCC

DCC DCC

Client
Workstation

 
Figure 18.   Typical SONET Network Management Communication Architecture (From 

Ref. [9].) 
 

C. OSI 
OSI network management is consistent with the overall OSI application 

layer architecture.  The SONET standards specify a 7-layer OSI protocol stack 

for both the DCN and the SONET Section DCC.  OSI was selected as the 

standard, because OSI protocols were accepted as the basis for the larger set of 

Telecommunications Management Network (TMN) standards.  CMISE is 

specified at the application layer (layer 7) for the management of SONET 

Network Elements (NEs). 
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Besides defining the managed objects (MIB), the Common Management 

Interface Services Elements (CMISE) standard [10] also defined several system 

management functions (SMFs) to support the more generalized System 

Management Functional Areas (SMFAs) such as fault, configuration, accounting, 

performance and security management. 

Some of the standardized SMFs include [10]: 

1. Object management 
2. State management 
3. Relationship management 
4. Alarm reporting 
5. Event management 
6. Log control 
7. Security alarm reporting 
8. Confidence and diagnostic testing 
9. Summarization function 
10. Workload monitoring function 
OSI network management is quite comprehensive but complex as 

compared to SNMP.  However, the OSI vision for the TMN though has been 

difficult to achieve.  CMISE saw only modest deployment for managing SONET 

equipment, while the vast majority of products continued to be managed with 

Transaction Language 1 (TL1).  TL1 is a traditional telecom language for 

managing and reconfiguring SONET network elements.  TL1 over OSI gave rise 

to the TARP protocol, which permits resolutions of an OSI Network Service 

Access Point (NSAP) address from a TL1 Target Identifier (TID) and vice versa. 

NSAP is the information that the OSI Network service provider needs to identify a 

particular network element whereas TID is a unique name given to each system 

when it is installed. The name identifies the particular NE, to which each 

command is directed. 

 

D. SNMP 
Compared to OSI, the SNMP layers are much simpler than the OSI suite.  

In SNMP, the network management applications consist of vendor-specific 

modules such as fault management, log control, security and audit trails but there 

are no real standards or specifications defined.  The interactions of the SNMP 
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layers with respect to the SONET/SDH are similar but simpler than the OSI 

sequence.  Basically, management applications map the SNMP management 

traffic instead of OSI headers into the DCC fields or the payload areas for onward 

transmission to the management process. 

Because of the simplicity and similarity of the SNMP network management 

process, service providers have recently began to request that SONET/SDH 

products support an IP protocol stack on their OS/NE interface (Ethernet), since 

many service providers did not want to implement an OSI-based DCN or deploy 

mediation devices.  IP on the OS/NE interface, while leaving OSI on the NE-NE 

interface (DCC) requires the NE to perform a non-trivial gateway function.  The 

gateway function involves accepting TCP connections on the LAN side, 

examining the TID of the TL1 message, and setting up an OSI association over 

the DCC with the remote target NE.  The gateway NE also needs to handle file 

transfers by accepting FTP transfers from the OS to the gateway NE, buffering 

the file, and then transferring the file to the target NE using the OSI File Transfer 

Access and Management (FTAM) application protocol. 

 

E. NEED FOR IP OVER DCC 
The existing operations communications standards have adequately 

addressed the traditional SONET network managed using TL1.  However, 

network technology is rapidly advancing to the point where the current standards 

no longer suffice.  The convergence of transport and data communication 

functionality into a single NE means that TL1 may no longer be sufficient or 

appropriate as the only management protocol.  Data NEs are typically managed 

with SNMP which poses a problem, since there are no standards addressing how 

to use SNMP over an OSI-based DCC.  As a workaround some vendors have 

introduced cumbersome IP over OSI tunneling capabilities.  Besides SNMP, 

there are a number of other management protocols which are emerging such as 

CORBA, HTML, and XML, all of which are transported over IP network.  These 

increasingly important protocols cannot readily be used over an OSI-based DCC, 

since again the standards only address CMISE and TL1. 
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Four key areas are highlighted below to address the need for IP over DCC 

for SONET/SDH network management: 

1. Useability 
TCP/IP is the common protocol for Data Communication Networks 

(DCNs).  On a larger scale, people are asking as to why there isn’t one protocol 

for the management systems, and because of TCP/IP’s momentum, it appears to 

be the one of choice. 

In many cases, OSI requires mediation devices/conversion to be sent over 

today’s DCN. 

2. Maintainability 
Worldwide acceptance/implementation of TCP/IP provides a large base of 

subject matter expertise.  The IETF is dedicated to supporting TCP/IP protocols 

for completeness and enhancement work items while the OSI stack’s support is 

dependent on the ISO/ITU-T for creating new standards and for fixing errors in 

current documents.   

The use of OSI protocols in the DCN for DCC integration and 

interoperation requires the IT professional to also learn the CLNS while 

maintaining a routed architecture with IP and SNMP.  Most IT departments would 

prefer to manage the IP network for the routers while allowing the operational 

staff to maintain the OSI portion.  Unfortunately, the IT departments must learn 

both.  Most Operational Support Systems (OSS)’s today have an OSI stack and 

an IP stack. Customers, who would rather run IP at the Network Operation 

Centre (NOC), and within the DCN, need to provide for a mediation function 

somewhere before the protocol packet gets to the DCC.   Mediation converts the 

packet from an OSI protocol to a TCP/IP packet.  Thus the IT staff is forced to 

learn both protocols. 

An OSS which uses an IP stack forces mediation to OSI at the DCC.  To 

our knowledge the work item for translating FTP to FTAM is incomplete.  Hence, 

no Network and Services Integrated Forum (NSIF) approved standard exists for 

software download in a mediated DCN. 



36 

3. System Cost 
OSI generally is purchased for a premium from few remaining OSI stack 

vendors.  The larger OSI stack requires significant system resources, memory 

and processing. 

The use of OSI forces the IT and operations staffs to learn both OSI and 

TCP/IP since OSI is on the DCC and TCP/IP is used as the maintenance 

protocol for routers. 

4. Prevalance 
TCP/IP is the protocol that has become the de-facto standard.  It is used 

in very large developments and has proven velocity in acceptance and services.  

Applications like HTTP (web), SNMP, and others run on top of TCP/IP; therefore 

given the huge data explosion, the momentum is definitely with a protocol that 

supports these applications.  OSS & NE’s are migrating to Ethernet Interfaces 

and DCNs have moved from X.25 to IP. 

The current direction of the optics standards bodies is to use IP as the 

protocol of choice for management applications and signaling.  This could result 

in OSI managed SONET technologies surrounded by IP managed topologies, 

forcing a dual mediation of the protocols if the customer wants to use  inband 

transport for OAM&P — dual by the way of mediation at ingress to the SONET 

DCC and mediation at the egress off the DCC at the CPE or terminal point. 

Old and new OSS systems generally support TCP/IP today.  New NEs 

have come to the market which supports TCP/IP for management transport.  The 

bottom line is there is a tremendous need for an IP over DCC standard.  The 

introduction of a new IP standard will of course create compatibility issues with 

the embedded base of OSI-based NEs.  However, for green field applications 

(brand-new build) of next generation SONET, hybrid, and optical networks, IP is 

the clear choice.  The problem is the lack of any standard to follow until now, with 

the birth of the ITU-T G.7712/Y.1203 Standard.   
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F. ITU-T G.7712/Y.1203 STANDARD 
G.7712 is the standard for Architecture and Specification of the Data 

Communications network (DCN).  It will be used for the network management, 

signaling and routing traffic in SONET/SDH, OTN and DWDM networks [2]. 

G.7712 is important for the telecommunication industry since it enables 

intelligent optical networks with combined IP-managed and OSI-managed 

equipment. It is also crucial for vendors of network edge devices as it allows for 

easy transport of network management traffic to these devices via the core 

optical switches without the need to create expensive and complicated overlay 

networks. 

1. Specifications 
Two key functional elements are introduced in the G.7712 standard.  The 

first one is the encapsulation of one protocol within another.  The other being the 

Integrated IS-IS protocol for routing IP and CLNP traffics across DCN.  Listed in 

Table 4 below are some of the more important specifications defined in the 

standard: 

a. Data Communication Interworking between Protocols 
The standard specifies the lower three layers (Physical, Data-Link 

and Network Layers) for data communication and any interworking between 

protocols within the lower three layers are carried out by the Data 

Communication Function (DCF).  The table below shows the protocols supported 

by the lower three layers: 

OSI and IP Protocols 

 OSI Model IP Model 

Layer 3 Protocol CLNP, IS-IS IP, OSPF, Integrated IS-IS, BGP 

Layer 2 Protocol LAPD PPP over HDLC MAC 

Layer 1 Protocol ECC ECC LAN 

Table 4.   OSI and IP Protocols supported by SONET/SDH (After Ref. [2].) 
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The physical layer may be either Ethernet, SDH-DCC (also known 

as Embedded Control Channel (ECC)), or some timeslot of a PDH signal. Either 

OSI protocols and TCP/IP protocols build on the same physical layer standards, 

thus there is no difference between OSI and TCP/IP in this aspect. 

The purpose of the data link layer is to provide error free data 

transmission even on noisy links. This is achieved by framing of data and 

retransmission of every frame until it is acknowledged from the far end, using 

flow control mechanisms. Error detection is done by means of error detection 

codes. 

The data link layer in the OSI world makes use of the Q.921 LAPD 

protocol which must support an information field length of at least 512 octets 

according to G.784. LAPD is based on HDLC framing. 

In the internet world there is no real data link layer protocol, but the 

subnet protocol which has quite many similarities. The subnet protocol consists 

of the IMP-IMP protocol which aims to provide a reliable connection between 

neighbored IMPs. 

For Ethernet-based networks, e.g. LANs (Local Area Network), the 

data link protocol LLC (Logical Link Control) is equally used in OSI and TCP/IP 

networks. 

The network layer provides routing capabilities between source and 

destination system. 

OSI uses the CLNS (Connection Less Network Service) protocols 

ES-IS for communication of an end system to an intermediate system and IS-IS 

for communication between intermediate systems. 

IP divides messages in datagrams of up to 64k length. Each 

datagram consists of a header and a text part. Besides some other information, 

the header contains the source and the destination address of the datagram. IP 

routes these datagrams through the network using either the Open Shortest Path 

First (OSPF) protocol or Route Information Protocol (RIP) for path calculation 
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purposes. However, the service provided by IP is not reliable and the datagrams 

may be received in the wrong order or they may even get lost in the network. 

b. MCN and SCN Data Communication Functions 
The DCF shall support the End System (ES) in OSI terms or the 

Host in IP term functionality.  It may also operate as an Intermediate System (IS) 

in OSI terms or as a router in IP terms.  The standard defines all the functions 

supported when DCF assumed any of the roles mentioned, such as: 

(1) ECC Access and Data-Link Termination Function 
(2) Ethernet LAN Physical Layer Termination Function 
(3) Network Layer PDU into ECC Data-Link / Ethernet Frame 

Encapsulation Function 
(4) Network Layer PDU Forwarding Function 
(5) Network Layer PDU Routing Function 
(6) Network Layer PDU Interworking Function 
(7) Network Layer PDU Encapsulation Function 
(8) Network Layer PDU Tunneling Function 
(9) IP Routing Interworking Function 
 
c. DCN Functional Architecture 
The DCN is aware of the three lower layers protocols and is 

transparent to the upper layers protocols used by the applications for which it 

transports.  It provides specifications for various data communication functions 

related to ECC interfaces, Ethernet LAN interfaces, and the network layer 

capabilities to support either OSI only, IP only or a mixed IP + OSI domains.  

More importantly, it spelt out the ways to allow automatic encapsulation in a 

mixed DCN that support different network layer protocols and also ensures 

backward compatibility with OSI only installed base. 

d. LAPD and PPP Encapsulation 
The standard defines the encapsulation functions for the network 

layer PDU into the data-Link frame, be it LAPD or PPP protocols being used in 

the DCN or via DCC serial links.  The HDLC framed signal is a serial bit stream 

containing stuffed frames surrounded by one or more flag sequences that is used 

by both LAPD and PPP protocols.  The mapping of the HDLC framed signal into 

the DCC channel is bit-synchronous, not direct mapping of stuffed HDLC frame 

into bytes within a DCC channel.  When carrying only IP over the DCC, PPP in 
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HDLC framing shall be used as the data-link layer protocol.  OSI only interface 

exist in the network today and LAPD protocol is the data-link layer protocol 

specified and in use since the beginning.  Thus for dual interface to connect to 

either IP-only or OSI-only interface, the data-link protocol must be configurable to 

switch between PPP in HDLC and LAPD framing. 

e. CLNP and IP Encapsulation  
This specification defines the encapsulation of one network layer 

protocol within another. The CLNP packets shall be encapsulated over IP using 

Generic Routing Encapsulation (GRE) as payload in an IP packet with an IP 

protocol number and Don’t Fragment (DF) flag not set.  It shall contains an 

Ethertype to indicate what network layer protocol is being encapsulated.  The IP 

packets shall be encapsulated over CLNS using Generic Routing Encapsulation 

(GRE) as payload of a CLNP Data Type PDU with an NSAP selector value and 

segmentation permitted (SP) flag set. 

f. CLNP and IP Tunneling 
The standard specifies the Network Layer PDU Tunneling Function 

to provides a static tunnel between two Data Communications Function (DCF)s 

supporting the same network layer PDU.  Any IP packet that cannot be 

forwarded due to its size larger than the MTU, with DF bit set should be 

discarded and generate an ICMP unreachable error message. 

g. CLNP and IP Forwarding 
The standard defines the Network Layer PDU Forwarding Function 

to forwards the CLNP and/or IP network layer packets according to their 

respective recommendations. 

h. CLNP and IP Routing 
The standard specifies the Network Layer PDU Routing Function, 

as its name implied, to route network layer packets.  A DCF supporting OSI 

routing shall support IS-IS while a DCF supporting IP routing shall support 

Integrated IS-IS and may also support OSPF and other routing protocols. 

 
 



41 

i. CLNP and IP Interworking 
The standard specifies the Network Layer PDU Interworking 

Function to ensure neighboring DCF functions running different network layer 

protocols (CLNP and/or IP) can communicate. 

2. New Updates 
The New ITU-T recommendation G.7712/Y.1703 'Architecture and 

Specification of Data Communication Network', was approved on March 12, 2003 

by ITU SG15 [11].  Equipment vendors such as Lucent, Nortel and Marconi 

collaborated to define the G.7712 standard. The standard is also a key building 

block for GMPLS, a protocol that ensures optimal routing and best network 

resource usage in combined IP, optical and circuit switching networks.  The latest 

revision adds the support of connection-oriented network for new services such 

as ASTN in addition to the original data communications functions that support 

connection-less network services  for TMN provided in the 11/2001 version. It 

allows the use of IP protocols as well as OSI protocols, through communication 

among the transport plane, the control plane, and the management plane. It also 

promotes automatic encapsulation to allow the IP traffic to cross over legacy OSI 

DCN as well as allows OSI traffic to cross new IP DCN. 

The details of the new features are summarized in the following sections: 

a. Terms and definitions 
It added in new terms and definitions for IP routing InterWorking 

Function, Network-Layer InterWorking Function and Automatically Encapsulating 

Data Communications Function (AE-DCF). 

b. Reliability of Signaling Communications Network (SCN) 
It inserted a line to mentioning that one way of achieving a reliable 

SCN is through use of Packet 1+1 protection for connection-oriented protocols 

such as MPLS. 

c. SCN Data Communication Functions 
It mentioned that the DCF within the ASTN entities may operate as 

an Label Edge Router (LER), Label Switch Router (LSR) and support the 

following functions: 
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(1) MPLS PDU into ECC Data-Link Layer Encapsulation Function 
(2) MPLS PDU into Ethernet Frame Encapsulation Function 
(3) MPLS LSP Signaling Function 
(4) MPLS LSP Forwarding Function 
(5) MPLS LSP path Computation Function 
(6) Network Layer Packet into MPLS Encapsulation Function 
It also stated the minimum requirements to provide packet 1+1 

protection services for the network as well as both Ingress and Egress nodes. 

d. Network Layer PDU into SDH ECC Data-Link Frame 
Encapsulation Function 

For IP-only interface, it required both transmit and receive ends to 

have IS-IS packets identified in the PPP Information and Protocol Fields.  For 

OSI-only interface, it needed the transmit end to put CLNP, ISIS and ESIS 

packets directly into LAPD.  For both IP + OSI interface, it wanted the dual 

interface that supports PPP as data-link protocol to have the CLNP, ISIS and 

ESIS packets directly into PPP Information Field and the OSI protocol value into 

the PPP Protocol Field at the transmit end.  For the dual interface that support 

LAPD as data-link protocol, the CLNP, ISIS and ESIS packets should be put 

directly into LAPD payload at the transmit end.   

e. Network Layer PDU Encapsulation Function 
As an option, the Network Layer PDU Encapsulation function may 

forward PDUs across incompatible nodes via the automatic encapsulation 

procedure described in Annex B as spelt out in the standard.  Take note that the 

DCF supporting the automatic encapsulation procedure is compatible with and 

can be deployed in the same area as a DCF that does not support the automatic 

encapsulation procedure. 

f. Integrated ISIS Requirements 
New paragraphs describing the Network-layer Protocol Aware 

Adjacency Creation are added.  In summary, it described what are the protocols 

supported by the DCF and the tasks the DCF should perform with and with no 

adjacency exists with the neighbor. 

 
 



43 

g. MPLS PDU into ECC Data-Link Layer Encapsulation 
Function 

This is a new section added in to explain the function of 

encapsulate and unencapsulate a MPLS PDU into an ECC Data-Link Layer 

frame.  At the Transmit end, it shall put MPLS packets directly into PPP 

Information Field with MPLS protocol value of 0281 hex into the PPP Protocol 

Field for MPLS Unicast.  At the receive end, it shall identify an MPLS packets if 

the PPP Protocol Field has the with MPLS protocol value of 0281 hex for MPLS 

Unicast. 

h. MPLS PDU into Ethernet Frame Encapsulation Function 
This is a new section added in to explain the function of 

encapsulate and unencapsulate a MPLS PDU into an Ethernet frame.  It shall 

encapsulate MPLS PDUs into Ethernet frames using an Ethertype value of 8847 

hex for MPLS Unicast. 

i. MPLS LSP Signaling Function 
This is a new section added in to explain the MPLS LSP Signaling 

function to provide the necessary signaling to set-up the MPLS LSP.  The DCF 

shall support the Explicit Path with a strict route via simple nodes for point-to-

point unicast LSP reservation model. 

j. MPLS LSP Forwarding Function 
This is a new section added in to explain the MPLS LSP 

Forwarding function that forwards the incoming MPLS packets to an outgoing 

interface based on its MPLS label and the Next Hop Label Forwarding Entry 

(NHLFE).  The sequence of packets must be maintained within an LSP. 

k. MPLS LSP Path Computation Function 
This is a new section added in to explain the MPLS LSP path 

Computation function that calculates the path for a unidirectional LSP.  It shall 

also calculate the paths for two unidirectional LSPs to the same destination such 

that their paths do not traverse the same node or subnetwork. 

 
 



44 

l. Network Layer Packet into MPLS Encapsulation 
Function 

This is a new section added in to explain the function that adds or 

removes the MPLS label stack entry to or from the network layer packet as 

described in RFC 3032. 

m. MPLS Packet 1+1 Protection Function 
This is a new section added in to explain the MPLS Packet 1+1 

Protection functions.  The ingress and egress nodes shall identify and associate 

the two LSPs providing packet 1+1 protection service via either network 

management interface or signaling.  The sequence number shall be used as the 

identifier for packet 1+1 protection.  Each copy of the dual-fed packet is assigned 

the same unique sequence number by the ingress node.  The sequence number 

of the next packet is generated by adding one to the current sequence number. 

n. Requirements for Three-way Handshaking 
This section is modified to explain the requirements for the Three-

way Handshaking function for the DCF that supports the Integrated IS-IS protocol 

for each point-to-point circuit that has an adjacency three-way state. 

o. Requirements for Automatic Encapsulation 
This is a new Annex added in to provide the specification for the 

optional AE-DCF that enables nodes that support routing of differing incompatible 

network layer protocols, such as CLNS, IPv4 or IPv6 to be present in a single IS-

IS level 1 area or level 2 subdomain.  It shall automatically encapsulates one 

network layer protocol into another as required, assuming all the nodes support 

IS-IS or Integrated IS-IS routing. 

p. Example Implementation of Automatic Encapsulation 
This is a new Appendix added in to provide some brief example 

details on how a node may be implemented with respect to one aspect of the 

feature specified in the standard. 
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q. Commissioning Guide for SDH NEs in Dual RFC 1195 
Environment and Impact of Automatic Encapsulation 
Option 

This is a new Appendix added in to provide guidance on installing 

the Integrated IS-IS nodes in a dual IPv4 and OSI network.  It also explained how 

to use the optional automatic encapsulation feature described in Annex B of the 

standard. 

r. Example Illustration of Packet 1+1 Protection 
This is a new Appendix added in to provide an example to illustrate 

how the Packet 1+1 protection function can be realized and implemented. 

 

G. SUMMARY 
This chapter examined the definitions and usage of DCC, DCN, OSI and 

SNMP (IP) used by the network management of SONET/SDH.  The need for IP 

over the DCC was reviewed.  It was followed by the first objective of the thesis 

study: examine the main features and new updates available in the ITU-T G.7712 

standard. 

In the next chapter, we will look at the response and support from the 

telecommunication industry about this standard before performing some traffic 

analysis on the two different routing protocols, IS-IS and OSPF defined in the 

G.7712 standard by using Opnet. 
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V. PERFORMANCE ANALYSIS 

A. CHAPTER OVERVIEW 
In this chapter, we will look at the response and support from the 

telecommunications industry for the ITU-T G.7712 standard.  We then perform 

some traffic analysis by creating an Opnet model to simulate the packet flow 

within a SONET DCC network and determine the differences and characteristics 

of the two routing protocols, IS-IS and OSPF defined in the G.7712 standard. 

 

B. INDUSTRY SUPPORT 
A survey was done to determine the support of the ITU-T G.7712 standard 

by some of the major SONET/SDH vendors in the telecommunications industry.  

Five vendors were selected: Alcatel, Cisco, ECI, Marconi and Nortel. [12,13] 

1. Alcatel 16xx Optical Families 
Alcatel manufactures the 1356DCN NMS that supports the G.7712 

standards to manage their 16xx Optical products.  It can manage both OSI and 

IP networks dedicated to the DCN of transmission networks [14].  

2. Cisco ONS 15600 
The Cisco ONS 15600 Multiservice Switching Platform supports the 

G.7712 standards and is managed by its NMS, the Cisco Transport manager.  

Similar to Alcatel, it can manage both OSI and IP networks dedicated to the 

DCN. [15] 

3. ECI Syncom & XDM 
ECI’s NMS, eNM does not support the G.7712 standards to manage their 

Syncom & XDM Optical families.  Instead, they support the MTMN v2 standards 

to make umbrella management under a TMN environment simpler to implement 

[16].  

4. Marconi MSH2K 
Marconi’s NMS currently supports only the OSI stack management and 

the embedded DCN's are OSI-based (i.e. the DCC carries OSI stack protocols 

and not IP packets).  The NMS manages the NE with a Q/OSI interface.  Marconi 
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plans to have automatic encapsulation support for IP + OSI DCN's in their latest 

products. [17] 

5. Nortel OPTera Metro 3000 
Nortel OPTera Metro 3000 supports the G.7712 standards for both IP and 

OSI management. It requires a Network Processor (NP) in order to support 

TCP/IP for management.  The NP acts as a gateway to the OSI stack of all Shelf 

Processors (SPs) within the NP's Span of Control. The SP can be connected 

directly to using either X.25 or OSI interface [13]. 

It can be seen that out of the five vendors selected, all four vendors except 

ECI support or plan to support OSI and IP networks dedicated to the DCN.  ECI 

in general only marginally support OSI DCN networks. 

 

C. TRAFFIC ANALYSIS 
OPNET IT Guru 10.0 is a modeling and simulation tool that provides an 

environment for analysis of communication networks. However, it does not have 

a SONET DCC model in its standard model library. Thus a SONET DCC network 

model was created to facilitate our simulation of IS-IS and OSPF routing 

protocols as defined in the G.7712 standard.  Three different scenarios were 

created using this OPNET model to simulate the packet flow within the SONET 

DCC network to understand the differences and characteristics of the two routing 

protocols. 

1. Simulation Assumptions and Parameters 
In order to simulate such a SONET DCN in an OPNET model, many 

assumptions and simplifications were necessarily made: 

a. No attempt was made to model the actual geometry or 

layout of the SONET DCN. 

b. There is one server and four workstations.  The servers run 

two main applications, database access and telnet sessions to mimic the types of 

transactions that the users will need to access.  The configurations and settings 

for these application simulations are shown in Figures 19 - 21. 
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Figure 19.   Applications Configuration 

 

 
Figure 20.   Database Access Table 
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Figure 21.   Telnet Session Table 

 

c. The routers in the simulation are not really pure routers, they 

are used in this simulation to represent the routing functions in the SONET 

equipment which are running either the IS-IS or OSPF protocol in the DCC 

environment. 

d. Two different user profiles were assumed: System 

Administrator and Remote User.  These two profiles attempt to mimic the types 

of users that would be using SONET DCN. The definitions of the profiles are 

shown below in Figure 22:  



51 

 
Figure 22.   Profiles Configuration 

 

The network configuration for this study consists of a server, workstations 

and routers and is depicted in Figure 23 below. 
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Figure 23.   SONET DCC Network in OPNET 

 

Workstation 0 (wkstn0 in Figure 23) and the server are located on the 

same premises as the SONET equipment whereas the other workstations are 

located at other sites.  These workstations are indirectly connected to the server 

via their local routers which are configured to form the DCN for network 

management of the optical network.  The data rate of the links connecting these 

workstations to the routers is 768 kbps (simulating the data rate of DCC in the 

SONET frame).  

For every simulation, applications are assumed to have a uniformly 

distributed start time offset with a minimum of ten seconds and maximum of 100 

seconds.  They are assumed to have unlimited repeatability.  The user profiles 

are assumed to randomly access applications in a serial fashion (i.e., one at a 

time).  The profile "log-on" times are uniformly distributed, with a minimum of one 

second and maximum of 500 seconds.  Profile repeatability is also unlimited. 
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2. Test Scenarios 
In order to check the characteristics of the IS-IS and OSPF routing 

protocols, three test scenarios were created by varying the routing protocols.  

The first simulation of the OSPF protocol was run in OPNET using the above 

parameters.  The second simulation was run with the same parameters as the 

first, except that the protocol used was assumed to be IS-IS for both routers 1 & 

2 while the rest of the routers were still using OSPF.  The final simulation was run 

in OPNET using IS-IS protocol for all routers.  All test scenarios were performed 

using the network configuration as shown in Figure 23. The objective of each 

experiment scenario was to evaluate performance metrics, such as Ethernet 

delay, server performance, link throughput, link utilization and link usage that are 

available in OPNET, collected after the simulation. 

These performance metrics were studied because Ethernet delay serves 

to identify the time taken for a packet to travel across multiple links to the 

destination. Assuming consistent behavior by the routing protocols, this is 

considered a reasonable measure of the impact on services that router functions 

– such as router specific messages or the choice of path length – will have on 

network performance. Server performance measures the time taken for the 

server to process a request from the workstations. Since the remote workstations 

are dispersed throughout the network, both Ethernet delay and server 

performance provide a good indication of potential bottlenecks and areas of 

congestion. A low value of either Ethernet delay or server performance indicates 

a network that is functioning efficiently with minimal overhead intrusion from the 

routing protocol.  

Similarly, link throughput provides a good measure for projected demand 

and potential performance-related problems. It is important to understand that 

link throughput is a time-averaged value. Since link throughput is the ratio of data 

sent to the time spent sending it, better routing performance can be inferred by 

lower values of link throughput. This is because an efficient routing protocol will 

send fewer overhead messages. 
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On the other hand, utilization indicates the percentage of loading on the 

link capacity over a specified period of time. Link utilization is defined as the ratio 

of link throughput over link data rate and it is closely related to network 

congestion and response time. Again, a lower value of link utilization indicates 

the network is not congested with routing overhead. Link utilization is used in this 

simulation to represent the traffic loading based on profiles of the users 

accessing the server via the workstations. 

3. Discussion of Simulation Results 
The test scenarios vary the type of routing protocols to determine the 

optimum performance within the network. Figure 24 to 31 illustrate comparisons 

between results of these protocols. The performance metrics studied were the 

Ethernet delay, server performance, link throughput, link utilization and link 

usage. 

 
Figure 24.   Ethernet Delay 
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Figure 25.   Server Performance 
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Figure 26.   Link Throughput between Server and Router 1 
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Figure 27.   Link Throughput between Workstation 1 and Router 3 
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Figure 28.   Link Throughput between Router 1 and Router 2 
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Figure 29.   Link Utilization between Server and Router 1 
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Figure 30.   Link Utilization between Workstation 1 and Router 3 
 



61 

 
Figure 31.   Link Utilization between Router 1 and Router 2 

 

a. Results of OSPF Routing Protocol 
This experiment was designed to explore the effects of OSPF 

routing protocol within the SONET DCN network. The assumption made in this 

experiment is that the OSPF protocol facilitates all the connections between 

workstations and the server via the routers as well as all the connections 

between routers. 

Figure 24 shows the result of Ethernet Delay. The time average of 

the Ethernet delay in the OSPF DCN network is around 0.0342 seconds and is 
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the lowest when compared to the other two scenarios. It shows that it is more 

efficient to route the data via a pure OSPF protocol. By design, OSPF uses very 

few overhead messages to update network nodes. Figure 25 shows the result of 

server performance. The average time taken for the server to respond back to 

the workstations requests is negligible. This is also the lowest amongst the three 

scenarios. 

Figures 26 to 28 show the result of link throughput. Since the result 

for a single measurement of end-to-end throughput from server to workstation 

cannot be generated by OPNET, three separate measurements are evaluated 

and can be used to represent the end-to-end throughput when combined. Figure 

26 shows the link throughput between the server and router 1. The time average 

of the link throughput is about 70 bits per second from router to server while 

nearly zero bits per second from server to router. The second graph shows the 

plot of link throughput between workstation 1 and router 3. The time average of 

the link throughput is about 70 bits per second from router to workstation while 

nearly zero bits per second from workstation to router.  The third graph shows 

the plot of link throughput between router 1 and router 2. The time average of the 

link throughput is about 60 bits per second between router 1 & 2. The link 

throughput is the lowest amongst the three scenarios. The end-to-end throughput 

derived from combining the results of these three figures will indicate that a pure 

OSPF routing protocol will take the shortest time to route the requests from 

workstation to the server. 

Figure 29 to 31 shows the result of link utilization. The first graph 

shows the plot of link utilization between server and router 1. The time average of 

the link utilization is about 0.00008% from router to server while nearly zero 0% 

from server to router. The second graph shows the plot of link utilization between 

workstation 1 and router 3. The time average of the link utilization is about 

0.00007% from router to workstation while nearly 0% from workstation to router. 

The third graph shows the plot of link utilization between router 1 and router 2. 

The time average of the link utilization is about 8% between router 1 & 2. The link 

utilization is the lowest amongst the three scenarios. Likewise, the end-to-end 
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utilization derived from combining the results of these three figures is the lowest 

for a pure OSPF protocol to route the traffic across the DCN. 

b. Results of IS-IS and OSPF Protocols 
This experiment was designed to explore the effects of IS-IS and 

OSPF routing protocols within the SONET DCN network. The assumption made 

in this experiment is that IS-IS protocol is applied to the connection between 

routers 1 & 2 while the rest of the routers are still using OSPF. 

Figure 24 shows the result of Ethernet delay. The time average of 

the Ethernet delay in the OSPF DCN network is around 0.03507 second and is 

the highest when compare to the other two scenarios. Figure 25 shows the result 

of server performance. The time average of the server performance load is about 

0.034 requests per second. This is also the highest amongst the three scenarios. 

Figure 26 to 28 shows the result of link throughput. The first graph 

shows the plot of link throughput between server and router 1. The time average 

of the link throughput is about 135 bits per second from router to server while 

nearly 70 bits per second from server to router. The second graph shows the plot 

of link throughput between workstation 1 and router 3. The time average of the 

link throughput is about 70 bits per second from router to workstation while nearly 

7 bits per second from workstation to router.  The third graph shows the plot of 

link throughput between router 1 and router 2. The time average of the link 

throughput is about 750 bits per second between router 1 & 2. 

Figure 29 to 31 shows the result of link utilization. The first graph 

shows the plot of link utilization between server and router 1. The time average of 

the link utilization is about 0.000135% from router to server while about 

0.00007% from server to router. The second graph shows the plot of link 

utilization between workstation 1 and router 3. The time average of the link 

utilization is about 0.00007% from router to workstation while about 0.000005% 

from workstation to router. The third graph shows the plot of link utilization 

between router 1 and router 2. The time average of the link utilization is about 

98.9% between router 1 & 2. 
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c. Results of IS-IS Routing Protocol 
This experiment was designed to explore the effects of IS-IS 

routing protocol within the SONET DCN network. The assumption made in this 

experiment is that IS-IS protocol facilitates all the connections between 

workstations and server via the routers as well as all the connections between 

routers. 

Figure 24 shows the result of Ethernet delay. The time average of 

the Ethernet delay in the OSPF DCN network is around 0.03506 second and is in 

the middle when compare to the other two scenarios. Figure 25 shows the result 

of server performance. The time average of the server performance load is about 

0.033 requests per second. This is also in the middle amongst the three 

scenarios. 

Figure 26 to 28 shows the result of link throughput. The first graph 

shows the plot of link throughput between server and router 1. The time average 

of the link throughput is about 125 bits per second from router to server while 

nearly 70 bits per second from server to router. The second graph shows the plot 

of link throughput between workstation 1 and router 3. The time average of the 

link throughput is about 75 bits per second from router to workstation while nearly 

10 bits per second from workstation to router.  The third graph shows the plot of 

link throughput between router 1 and router 2. The time average of the link 

throughput is about 750 bits per second between router 1 & 2. 

Figure 29 to 31 shows the result of link utilization. The first graph 

shows the plot of link utilization between server and router 1. The time average of 

the link utilization is about 0.000125% from router to server while about 

0.00007% from server to router. The second graph shows the plot of link 

utilization between workstation 1 and router 3. The time average of the link 

utilization is about 0.00007% from router to workstation while about 0.00001% 

from workstation to router. The third graph shows the plot of link utilization 
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between router 1 and router 2. The time average of the link utilization is about 

98.9% between router 1 & 2. 

d. Comparison of the Effects of Different Routing 
Protocols  

With all the results obtained from Figure 24 to 31, we can now 

analyze the effects of the different routing protocols presented in the three 

different scenarios. 

From the results obtained from Figure 24, the OSPF DCN network 

experiences the lowest Ethernet delay in the network.  The other two scenarios 

running IS-IS routing protocols have higher Ethernet delay. Further, the pure IS-

IS DCN network takes a longer time to reach the steady state when more traffic 

is generated in the DCN network. It shows that a pure OSPF protocol is the most 

efficient routing protocol to route data over the DCN. 

As shown in Figure 25, the results show that a pure OSPF DCN 

network has the lowest average time taken for the server to respond back to the 

workstations requests. For comparison, the other two scenarios have almost 

identical results when the server processes the workstation’s requests. This 

shows that the server is most efficient in processing the data when the 

workstation requests are routed via OSPF protocol in the DCN as compared to 

either a pure IS-IS or mixed IS-IS with OSPF protocols when applied to the DCN. 

Figure 26 to 28 presented the results of link throughput. In general, 

the DCN network running pure OSPF routing protocol has the lowest link 

throughput with the traffic flow between the server and workstations. The link 

throughput is almost similar for the other two scenarios running IS-IS routing 

protocols but there are slight differences. The hybrid IS-IS and OSPF DCN 

network has a slightly higher link throughput between server and router 1 as 

compared to the pure IS-IS DCN network as protocol translation from OSPF to 

IS-IS is needed from all traffic generated from the other workstations when 

routed to their respective routers before entering router 1. 
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The results of the link utilization are shown in Figure 29 to 31. 

Similar to the results of the link throughput, the DCN network running pure OSPF 

routing protocol has the lowest link utilization, be it traffic flowing from the routers 

to the server and workstations or traffic generated from the server and 

workstations to the routers.  This is due to the fact that there is no routing 

protocol translation needed in the network.  For the other two scenarios running 

IS-IS routing protocols, the link utilization is almost similar but there are slight 

differences. The hybrid IS-IS and OSPF DCN network is has slightly higher link 

utilization between server and router 1 as compared to the pure IS-IS DCN 

network. Similar to the arguments given for the link throughput, this is because 

protocol translation from OSPF to IS-IS is needed from all traffic generated from 

the other workstations when routed to their respective routers before entering 

router 1. 

The overall results show that a pure OSPF protocol for DCC 

network is the way forward as its performance is the best. ISIS-OSPF is just a 

interim for the DCC network to perform in the same way as a pure ISIS (OSI) 

DCC network solely used in the SONET/SDH world. Thus G.7712 in specifying 

the IP network for the DCC network is the way to go and thus, most SONET/SDH 

vendors are moving in that direction as highlighted in the earlier paragraphs. 

 

D. SUMMARY 
This chapter presented an overview of the responses and supports 

gathered from the Telecommunication industry to the G.7712 standard.  

Subsequently, the modeling of both OSPF and IS-IS routing protocols within a 

SONET DCN Network was created using OPNET. It outlined three test scenarios 

used for the simulation and presented the simulation results and the effects on 

each routing protocols. 

The next chapter summarizes the findings from this study and presents 

possible areas for future work. 



67 

VI. CONCLUSION 

A. CHAPTER OVERVIEW 
This chapter provides a summary of the findings of this study. Included in 

the summary are conclusions from observations made during the execution of 

this study. Suggestions for future and follow-on work are also presented. 

 

B. OUTCOME OF RESEARCH 
This thesis project has provided the author with many learning 

opportunities regarding the G.7712 ITU-T standard and its usefulness and 

presence in the telecommunication industry. 

The first part of this study involved study into the main features and new 

updates available in the ITU-T G.7712 standard.  The push for an eventual IP 

DCN for managing the SONET network is obvious.  The key element in the 

standard is offering the integrated IS-IS protocol for routing IP and CLNP traffic 

across the DCN.  This protocol allows the use of IP protocols as well as OSI 

protocols, through communication among the transport, control and management 

plane of the network. It also promotes automatic encapsulation to allow the IP 

traffic to cross over a legacy OSI DCN as well as allow OSI traffic to cross the 

new IP DCN. 

Subsequently, a SONET DCN model was created using OPNET to allow 

various test scenarios to be simulated for exploring the effects of both OSPF and 

IS-IS routing protocols.  From the results obtained, we found that a pure OSPF 

DCN network is the best amongst the three different scenarios.  It has the lowest 

Ethernet delay and the best server-workstation performance in the network.  It 

also has the lowest link throughput and link utilization in the network.  

On the other hand, both the scenarios running pure IS-IS and hybrid IS-IS 

and OSPF routing protocols have higher delays and longer processing time in 

the network.  They also experience higher link throughput and utilization in the 

network.  The simulation results obtained for these two scenarios are almost 
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identical but there are some slight differences.  The Ethernet delay, server 

performance, link throughput and link utilization are typically higher for a hybrid 

IS-IS and OSPF DCN network when traffic transverses through router 1 and 

require communications with the server. This is because protocol translation from 

OSPF to IS-IS is needed from all traffic generated from the other workstations 

when routed to their respective routers before entering router 1 and the server.  

However, a pure IS-IS DCN network takes a longer time to reach the steady 

state for the Ethernet delay when more traffic is generated in the DCN network. 

The difference between a pure IS-IS and hybrid IS-IS and OSPF DCN 

network is not really significant when compared to a pure OSPF DCN network.  

Deploying hybrid IS-IS and OSPF routing protocols should be seen as the 

direction for the SONET DCN implementation when more and more SONET 

equipment vendors are deploying G.7712 standard with their equipment.  

Eventually a pure OSPF DCN is recommended when all the SONET vendors 

began to realize the benefits and usefulness of OSPF routing in an IP based 

DCN network. 

 

C. FUTURE RESEARCH AREAS 
The results of this research can be construed as accurate in so far as one 

acknowledges the myriad assumptions and simplifications. Further research 

should be conducted with more realistic representations of the target network by 

modeling the SONET network using the models found in the OPNET WDM Guru. 

In addition, a test network can be setup in the laboratory once the actual 

SONET hardware and software have arrived and the network analysis tool can 

be installed into the SONET network management system to analyze the results. 

The test scenarios generated in this study could be reproduced and actual traffic 

data obtained from the SONET DCN testbed can be used to compare with the 

OPNET analysis performed in this study. 
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